

RotDiff: A Hyperbolic Rotation Representation Model for Information Diffusion Prediction

Hongliang Qiao* Harbin Institute of Technology Shenzhen, China 21s151112@stu.hit.edu.cn

Huiwei Lin Harbin Institute of Technology Shenzhen, China linhuiwei@stu.hit.edu.cn Shanshan Feng* Wecar Technology Co., Ltd. Shenzhen, China victor_fengss@foxmail.com

Han Hu Beijing Institute of Technology Beijing, China hhu@bit.edu.cn

Yunming Ye Harbin Institute of Technology Shenzhen, China yeyunming@hit.edu.cn Xutao Li[†]
Harbin Institute of Technology
Shenzhen, China
lixutao@hit.edu.cn

Wei Wei Huazhong University of Science and Technology Wuhan, China weiw@hust.edu.cn

https://github.com/PlaymakerQ/RotDiff

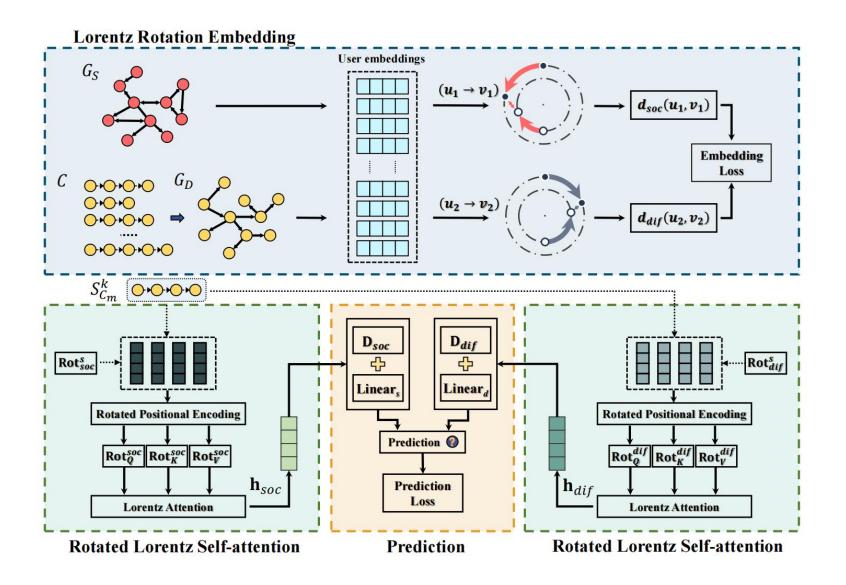
- 1.Introduction
- 2.Method
- 3. Experiments



Introduction

Existing methods are mainly based on Euclidean space, which cannot well preserve the underlying hierarchical structures that could better reflect the strength of user influence.

Meanwhile, existing methods cannot accurately model the obvious **asymmetric features** of the diffusion process.



Problem Definition

$$C_{m} = \{(u_{1}^{m}, t_{1}^{m}), (u_{2}^{m}, t_{2}^{m}), \cdots, (u_{L_{m}}^{m}, t_{L_{m}}^{m})\}$$

$$G_{S} = (V_{S}, E_{S})$$

$$G_{D} = (V_{D}, E_{D})$$

$$S_{C_{m}}^{k} = \{u_{1}, \cdots, u_{k}\}$$

Hyperbolic Geometry

$$\mathcal{L}_{\gamma}^{d} = (\mathbb{L}_{\gamma}^{d}, g_{\mathbf{x}}^{\gamma})$$

$$\mathbb{L}_{\gamma}^{d} = \{\mathbf{x} \in \mathbb{R}^{d+1} : \langle \mathbf{x}, \mathbf{x} \rangle_{\mathcal{L}} = -\gamma \}$$

$$\mathbf{x} = (x_{0}, x_{1}, \cdots, x_{d}) \quad x_{0} = \sqrt{\gamma + \sum_{i=1}^{d} x_{i}^{2}} > 0$$

$$\langle \mathbf{x}, \mathbf{y} \rangle_{\mathcal{L}} = -x_{0} \cdot y_{0} + \sum_{i=1}^{d} x_{i} \cdot y_{i}, \qquad (1)$$

$$||\mathbf{x}||_{\mathcal{L}} = \sqrt{\langle \mathbf{x}, \mathbf{x} \rangle_{\mathcal{L}}}$$

$$\langle \mathbf{x}, \mathbf{y} \rangle_{\mathcal{L}} \leq -\gamma$$

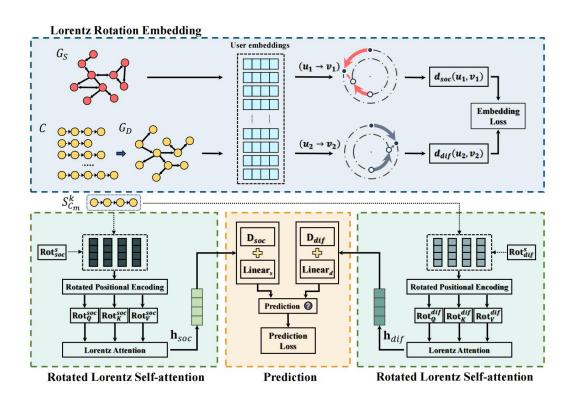
$$g_{\mathbf{x}}^{\gamma} = \operatorname{diag}([-1, 1, 1, \cdots, 1])$$

$$D_{SL}(\mathbf{x}, \mathbf{y}) = -2\gamma - 2\langle \mathbf{x}, \mathbf{y} \rangle_{C}. \tag{2}$$

$$\mathbf{Rot}_{\Theta} = \left[egin{array}{ccc} \mathbf{R}\left(heta_{r,1}
ight) & & & & & \\ & \mathbf{R}\left(heta_{r,2}
ight) & & & & \\ & & & \mathbf{R}\left(heta_{r,d/2}
ight) \end{array}
ight],$$

(3) Rot
$$\in \mathbb{R}^{d \times d}$$

$$\mathbf{R}(\theta_{r,i}) = \begin{bmatrix} \cos(\theta_{r,i}) & -\sin(\theta_{r,i}) \\ \sin(\theta_{r,i}) & \cos(\theta_{r,i}) \end{bmatrix} . \tag{4}$$



Lorentz Rotation Embedding

$$f: \mathbf{z} = (x_1, x_2, \dots, x_d) \to \mathbf{x}_0 = (x_0, x_1, x_2, \dots, x_d),$$

$$x_0 = \sqrt{\gamma + \sum_{i=1}^{d-1} x_i^2} = \sqrt{\gamma + ||\mathbf{z}||^2}.$$
(5)

$$(u \rightarrow v)$$

$$\mathbf{x}_{u}^{socs} = \mathbf{Rot}_{soc}^{s}(\mathbf{x}_{u}),$$

$$\mathbf{x}_{v}^{soct} = \mathbf{Rot}_{soc}^{t}(\mathbf{x}_{v}).$$
(6)

$$\mathbf{x}_{u}^{dif_{S}} = \operatorname{Rot}_{dif}^{s}(\mathbf{x}_{u}),$$

$$\mathbf{x}_{v}^{dif_{t}} = \operatorname{Rot}_{dif}^{t}(\mathbf{x}_{v}).$$
(7)

$$S_{uv}^{soc} = -D_{SL}(\mathbf{x}_{u}^{soc_{s}}, \mathbf{x}_{v}^{soc_{t}}) + b_{u}^{soc} + b_{v}^{soc},$$

$$S_{uv}^{dif} = -D_{SL}(\mathbf{x}_{u}^{dif_{s}}, \mathbf{x}_{v}^{dif_{t}}) + b_{u}^{dif} + b_{v}^{dif},$$
(8)

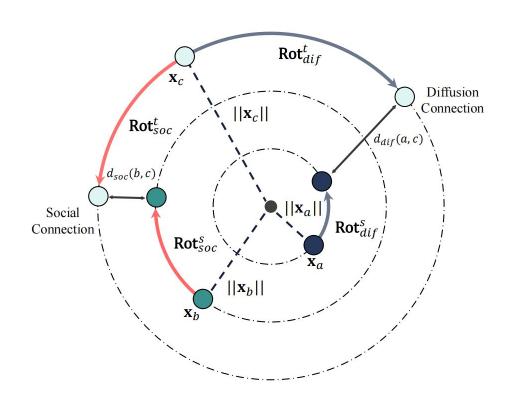
$$P(v|u) = \frac{e^{S_{uv}^{soc}}}{E(u)}, \qquad (9) \qquad E(u) = \sum_{i \in V_S} e^{S_{ui}^{soc}}$$

$$\log P(v|u) \approx \log \sigma(S_{uv}^{soc}) + \sum_{i \in \mathcal{N}} \log \sigma(-S_{ui}^{soc}), \tag{10}$$

$$O_{soc} = \sum_{u \in V_S} \log P(C_u|u) = \sum_{u \in V_S} \sum_{v \in C_u} \log P(v|u),$$

$$O_{dif} = \sum_{u \in V_D} \log P(D_u | u) = \sum_{u \in V_D} \sum_{v \in D_u} \log P(v | u),$$
 (11)

$$\mathcal{L}_{emb} = -\left(O_{soc} + O_{dif}\right). \tag{12}$$



Lorentz Rotation Embedding

$$f: \mathbf{z} = (x_1, x_2, \dots, x_d) \to \mathbf{x}_0 = (x_0, x_1, x_2, \dots, x_d),$$

$$x_0 = \sqrt{\gamma + \sum_{i=1}^{d-1} x_i^2} = \sqrt{\gamma + ||\mathbf{z}||^2}.$$
(5)

$$(u \rightarrow v)$$

$$\mathbf{x}_{u}^{socs} = \mathbf{Rot}_{soc}^{s}(\mathbf{x}_{u}),$$

$$\mathbf{x}_{v}^{soct} = \mathbf{Rot}_{soc}^{t}(\mathbf{x}_{v}).$$
(6)

$$\mathbf{x}_{u}^{dif_{S}} = \mathbf{Rot}_{dif}^{s}(\mathbf{x}_{u}),$$

$$\mathbf{x}_{v}^{dif_{t}} = \mathbf{Rot}_{dif}^{t}(\mathbf{x}_{v}).$$
(7)

$$S_{uv}^{soc} = -D_{SL}(\mathbf{x}_{u}^{soc_{s}}, \mathbf{x}_{v}^{soc_{t}}) + b_{u}^{soc} + b_{v}^{soc},$$

$$S_{uv}^{dif} = -D_{SL}(\mathbf{x}_{u}^{dif_{s}}, \mathbf{x}_{v}^{dif_{t}}) + b_{u}^{dif} + b_{v}^{dif},$$
(8)

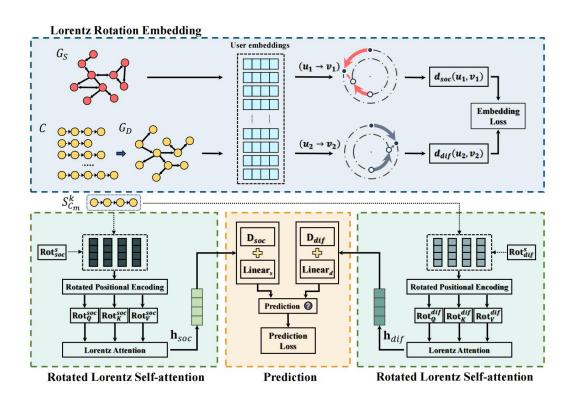
$$P(v|u) = \frac{e^{S_{uv}^{SOC}}}{E(u)}, \qquad (9) \qquad E(u) = \sum_{i \in V_S} e^{S_{ui}^{SOC}}$$

$$\log P(v|u) \approx \log \sigma(S_{uv}^{soc}) + \sum_{i \in \mathcal{N}} \log \sigma(-S_{ui}^{soc}), \tag{10}$$

$$O_{soc} = \sum_{u \in V_S} \log P(C_u|u) = \sum_{u \in V_S} \sum_{v \in C_u} \log P(v|u),$$

$$O_{dif} = \sum_{u \in V_D} \log P(D_u | u) = \sum_{u \in V_D} \sum_{v \in D_u} \log P(v | u),$$
 (11)

$$\mathcal{L}_{emb} = -\left(O_{soc} + O_{dif}\right). \tag{12}$$



Lorentz Rotation Embedding

$$f: \mathbf{z} = (x_1, x_2, \dots, x_d) \to \mathbf{x}_0 = (x_0, x_1, x_2, \dots, x_d),$$

$$x_0 = \sqrt{\gamma + \sum_{i=1}^{d-1} x_i^2} = \sqrt{\gamma + ||\mathbf{z}||^2}.$$
(5)

$$(u \rightarrow v)$$

$$\mathbf{x}_{u}^{socs} = \mathbf{Rot}_{soc}^{s}(\mathbf{x}_{u}),$$

$$\mathbf{x}_{v}^{soct} = \mathbf{Rot}_{soc}^{t}(\mathbf{x}_{v}).$$
(6)

$$\mathbf{x}_{u}^{dif_{S}} = \operatorname{Rot}_{dif}^{s}(\mathbf{x}_{u}),$$

$$\mathbf{x}_{v}^{dif_{t}} = \operatorname{Rot}_{dif}^{t}(\mathbf{x}_{v}).$$
(7)

$$S_{uv}^{soc} = -D_{SL}(\mathbf{x}_{u}^{soc_{s}}, \mathbf{x}_{v}^{soc_{t}}) + b_{u}^{soc} + b_{v}^{soc},$$

$$S_{uv}^{dif} = -D_{SL}(\mathbf{x}_{u}^{dif_{s}}, \mathbf{x}_{v}^{dif_{t}}) + b_{u}^{dif} + b_{v}^{dif},$$
(8)

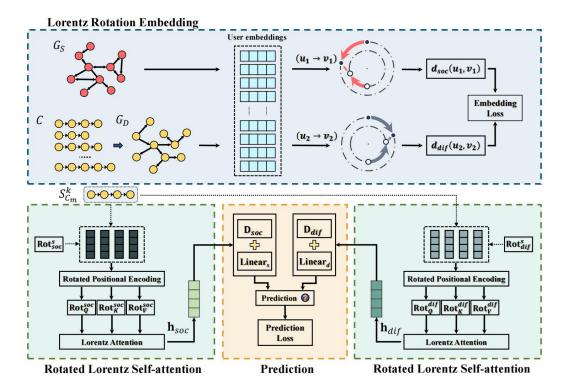
$$P(v|u) = \frac{e^{S_{uv}^{soc}}}{E(u)}, \qquad (9) \qquad E(u) = \sum_{i \in V_S} e^{S_{ui}^{soc}}$$

$$\log P(v|u) \approx \log \sigma(S_{uv}^{soc}) + \sum_{i \in \mathcal{N}} \log \sigma(-S_{ui}^{soc}), \tag{10}$$

$$O_{soc} = \sum_{u \in V_S} \log P(C_u|u) = \sum_{u \in V_S} \sum_{v \in C_u} \log P(v|u),$$

$$O_{dif} = \sum_{u \in V_D} \log P(D_u | u) = \sum_{u \in V_D} \sum_{v \in D_u} \log P(v | u),$$
 (11)

$$\mathcal{L}_{emb} = -\left(O_{soc} + O_{dif}\right). \tag{12}$$



$$\mathbf{y}_{i} = \frac{\sum_{j=1}^{|K|} \alpha_{ij} \mathbf{v}_{j}}{\sqrt{\gamma} \left\| \left\| \sum_{k=1}^{|K|} \alpha_{ik} \mathbf{v}_{k} \right\|_{\mathcal{L}} \right\|},$$

$$\alpha_{ij} = \frac{\exp\left(\frac{-D_{SL}(\mathbf{q}_{i}, \mathbf{k}_{j})}{\sqrt{d}}\right)}{\sum_{k=1}^{|K|} \exp\left(\frac{-D_{SL}(\mathbf{q}_{i}, \mathbf{k}_{j})}{\sqrt{d}}\right)}.$$
(13)

$$\mathbf{h}_{soc} = \frac{\sum_{i=1}^{k} \alpha_{i} z_{V,i}^{soc}}{\sqrt{y} \left\| \sum_{i=1}^{k} \alpha_{i} z_{V,i}^{soc} \right\|_{\mathcal{L}}},$$

$$\alpha_{i} = \frac{\exp\left(\frac{-D_{SL}(z_{Q,i}^{soc}, z_{K,i}^{soc})}{\sqrt{d}}\right)}{\sum_{j=1}^{k} \exp\left(\frac{-D_{SL}(z_{Q,i}^{soc}, z_{K,j}^{soc})}{\sqrt{d}}\right)},$$

$$\mathbf{z}_{Q,i}^{soc} = \operatorname{Rot}_{Q}(\mathbf{x}_{p,i}^{socs}), \mathbf{z}_{K,i}^{soc} = \operatorname{Rot}_{K}(\mathbf{x}_{p,i}^{socs}) \text{ and } \mathbf{z}_{V,i}^{soc} = \operatorname{Rot}_{V}(\mathbf{x}_{p,i}^{socs})$$

$$\mathbf{x}_{p,i}^{socs} = \operatorname{Rot}_{i}^{pe}(\mathbf{x}_{i}^{socs})$$

$$\mathbf{y}_{soc} = \mathbf{D}_{soc} + \mathbf{h}_{soc}^{T} \mathbf{W}_{s} + \mathbf{b}_{s},$$

$$\mathbf{y}_{dif} = \mathbf{D}_{dif} + \mathbf{h}_{dif}^{T} \mathbf{W}_{d} + \mathbf{b}_{d},$$

$$\mathbf{D}_{soc,i} = -D_{SL}(\mathbf{h}_{soc}, \mathbf{x}_{i}^{soct})$$

$$\hat{\mathbf{y}} = \operatorname{Softmax}(\mathbf{y}_{soc} + \mathbf{y}_{dif} + \mathbf{M}^{pre}),$$

$$\mathcal{L}_{pre} = -\sum_{j=1}^{|S|} \sum_{i=1}^{|U_{S}|} \mathbf{y}_{j,i} \log(\hat{\mathbf{y}}_{j,i}),$$

$$\mathcal{L}_{total} = \mathcal{L}_{emb} + \mathcal{L}_{pre}.$$
(19)

Table 1: Statistics of datasets used in our experiments.

Dataset	#Nodes	#Edges	#Cascades	#Ave Length
Android	9,958	48,573	679	41.05
Christianity	2,897	35,624	587	25.10
Memetracker	4,709	-	12,661	16.24
Twitter	12,627	309,631	3,442	32.60
Douban	12,232	396,580	3,475	21.76

Table 2: The prediction results of Hits@k on five datasets.

Dataset	Android		C	Christianity		Memetraker		Twitter			Douban				
Hits@k	@10	@50	@100	@10	@50	@100	@10	@50	@100	@10	@50	@100	@10	@50	@100
NDM	0.0339	0.0953	0.1572	0.1651	0.3510	0.4553	0.2083	0.3663	0.4583	0.1934	0.2941	0.3573	0.1013	0.2123	0.3125
Inf-VAE	0.0673	0.1573	0.2179	0.1774	0.3960	0.5215	0.2124	0.4077	0.4934	0.1476	0.3178	0.4512	0.1116	0.2214	0.3468
FOREST	0.0700	0.1514	0.2237	0.2632	0.4909	0.6056	0.2963	0.4780	0.5786	0.2552	0.3850	0.4607	0.1868	0.3084	0.3857
DyHGCN	0.0842	0.1915	0.2679	0.2594	0.4976	0.6047	0.2952	0.4864	0.5848	0.2901	0.4688	0.5719	0.1987	0.3289	0.3942
HyperINF	0.0848	0.1553	0.2236	0.2700	0.4460	0.5165	0.2483	0.4634	0.5949	0.2692	0.4442	0.5648	0.1834	0.3321	0.4016
MS-HGAT	0.1049	0.1987	0.2747	0.2781	0.4814	0.5703	0.2843	0.4966	0.6047	0.2996	0.4654	0.5735	0.2065	0.3504	0.4136
H-diffu	0.0981	0.1860	0.2623	0.2746	0.5089	0.6004	0.2195	0.4499	0.5720	0.2707	0.4533	0.5636	0.1984	0.3479	0.4155
RotDiff	0.1144	0.2304	0.3130	0.3237	0.5625	0.6674	0.3066	0.5170	0.6206	0.3590	0.5246	0.6121	0.2216	0.3823	0.4637

Table 3: The prediction results of MAP@k on five datasets.

Dataset	Android		roid Christianity Memetrake		er	Twitter			Douban						
MAP@k	@10	@50	@100	@10	@50	@100	@10	@50	@100	@10	@50	@100	@10	@50	@100
NDM	0.0219	0.0244	0.0252	0.0676	0.0751	0.0765	0.1059	0.1131	0.1144	0.1296	0.1339	0.1348	0.0836	0.0879	0.0936
Inf-VAE	0.0426	0.0441	0.0482	0.1035	0.1194	0.1249	0.1345	0.1379	0.1446	0.1632	0.1725	0.1747	0.1044	0.1098	0.1142
FOREST	0.0381	0.0416	0.0426	0.1328	0.1433	0.1449	0.1553	0.1637	0.1751	0.1733	0.1790	0.1801	0.1086	0.1146	0.1183
DyHGCN	0.0458	0.0503	0.0514	0.1303	0.1415	0.1432	0.1611	0.1623	0.1725	0.1751	0.1832	0.1847	0.1048	0.1114	0.1148
HyperINF	0.0424	0.0461	0.0467	0.1629	0.1719	0.1732	0.1434	0.1545	0.1566	0.1679	0.1756	0.1774	0.1042	0.1139	0.1138
MS-HGAT	0.0633	0.0675	0.0685	0.1732	0.1825	0.1836	0.1542	0.1641	0.1657	0.1880	0.1951	0.1965	0.1122	0.1187	0.1198
H-diffu	0.0606	0.0643	0.0653	0.1689	0.1795	0.1808	0.1409	0.1514	0.1531	0.1777	0.1868	0.1885	0.1067	0.1017	0.1127
RotDiff	0.0696	0.0745	0.0756	0.1981	0.2091	0.2105	0.1653	0.1691	0.1766	0.2406	0.2482	0.2495	0.1170	0.1254	0.1266

Table 4: The effect of curvature parameter γ .

Dataset	And	roid	Christ	istianity		
Metrics (@50)	Hits	MAP	Hits	MAP		
$\gamma = 0.1$	0.2312	0.0728	0.5402	0.2087		
$\gamma = 0.3$	0.2296	0.0709	0.5513	0.2053		
$\gamma = 0.6$	0.2258	0.0724	0.5670	0.2054		
$\gamma = 1.0$	0.2304	0.0745	0.5625	0.2091		
$\gamma = 1.5$	0.2289	0.0729	0.5603	0.2041		
y = 2.0	0.2120	0.0724	0.5491	0.2053		

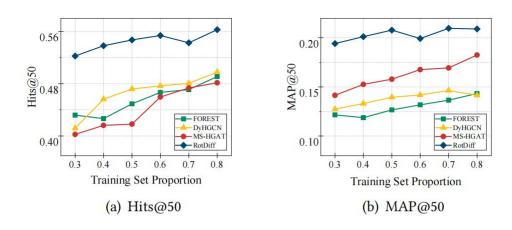


Figure 5: The effect of training set proportion on Christianity.

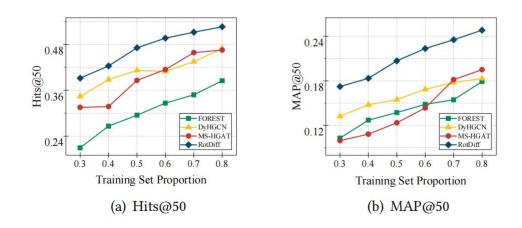
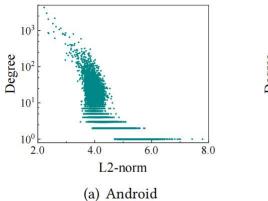


Figure 6: The effect of training set proportion on Twitter.

Table 5: The results of ablation study.

Dataset	Christ	tianity	Twitter			
Metrics (@50)	Hits	MAP	Hits	MAP		
(1) w/o hyperbolic	0.5312	0.1928	0.5102	0.2287		
(2) only soc-graph	0.5446	0.1993	0.5087	0.2300		
(3) only dif-graph	0.5580	0.1974	0.5210	0.2319		
(4) w/o Lo-rot-emb	0.5369	0.1955	0.4867	0.2137		
(5) w/o all-att	0.5133	0.1845	0.4783	0.2032		
(6) w/o Rot-in-att	0.5446	0.1924	0.5186	0.2295		
RotDiff	0.5625	0.2091	0.5246	0.2482		



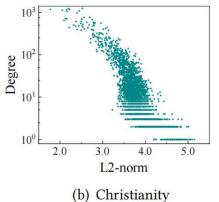


Figure 7: The correlation between the L2-norm of user embeddings and node degree.

Thank you!